

 SolidPractices:

SQL Server Performance

SOLIDWORKS® PDM
Last Update: April 2020

Revision 1.0

3

D
S.

C
O

M
 ©

 D
as

sa
u

lt
 S

ys
tè

m
es

 |
 C

o
n

fi
d

en
ti

al
 I

n
fo

rm
at

io
n

 |
 0

6
/2

7
/2

0
1

7
 r

ef
.:

 D
o

cu
m

en
t_

R
ef

er
en

ce
 |

 2

Table of Contents

1) PREFACE .. 5

2) SOLIDWORKS PDM ARCHITECTURE ... 6

A) ADDITIONAL READING MATERIAL ... 7

3) INSTALLATION AND CONFIGURATION ... 8

A) OVERVIEW .. 8

B) SERVER SIZING ... 8

C) OPERATING SYSTEM .. 8

D) RECOVERY MODEL .. 10

E) PROCESSOR... 10

i) Minimum logical CPUs based on the number of active users ... 11

ii) SQL Server editions CPU limitations .. 11

F) MEMORY ... 11

i) RAM and Databases .. 12

ii) Sharing RAM .. 13

iii) Limiting the memory that SQL Server can allocate .. 14

iv) Memory limitation by SQL Server edition .. 15

G) DISK CONFIGURATION ... 15

i) Database size limitations for SQL Server editions .. 15

ii) File architecture ... 15

iii) Optimizing the database files ... 16

iv) Multiple database files ... 17

v) Understanding RAID for SQL Server .. 18

vi) Software RAID ... 18

vii) Hardware RAID .. 18

viii) How many hard drives do I need to support SQL Server? ... 20

H) CONFIGURE TEMPDB ... 26

i) Move tempdb files ... 26

ii) Use Multiple, dedicated disks ... 26

iii) Configure tempdb size ... 27

iv) Create multiple data files ... 28

v) Summary ... 29

I) DATABASE REPLICATION ... 30

J) CONFIGURE SQL SERVICES.. 30

K) CONFIGURE ERROR LOGS.. 33

i) Regular maintenance activities .. 34

ii) Overview of SQL Server maintenance plans .. 34

iii) Daily tasks ... 36

iv) Weekly and monthly tasks ... 36

v) Quarterly tasks .. 36

vi) Set up performance alerts .. 36

4) INVESTIGATING PERFORMANCE PROBLEMS .. 37

A) OVERVIEW .. 37

B) TROUBLESHOOTING METHODOLOGIES ... 37

i) Setup check ... 37

 3

ii) Collecting performance data .. 38

iii) Analyzing performance data .. 40

C) PERFORMANCE DATA COLLECTION SETUP ... 41

i) SQL Server tracing .. 41

D) PERFORMANCE BASELINES .. 59

i) How to make performance baselines .. 59

ii) Schedule monitoring .. 60

iii) Compare performance benchmark data ... 60

E) DATABASE REPLICATION ... 60

F) MEMORY ... 60

G) DISK .. 61

H) PROCESSOR... 61

I) INDEX FRAGMENTATION ... 62

J) TEMPDB FILES ... 64

K) TRANSACTION LOG FILE .. 64

5) REFERENCES .. 65

A) SOLIDWORKS PDM SOLUTIONS.. 65

B) MICROSOFT KNOWLEDGE BASE.. 66

 4

Revision History

Rev # Date Description
1.0 Apr 2020 Document updated for the latest software version. Revised for

use by customers and reset as document version 1.0

Note

All SolidPractices are written as guidelines. It is a strong recommendation to use these

documents only after properly evaluating your requirements. Distribution of this document is

limited to Dassault Systèmes SolidWorks employees, VARs, and customers that are on active

subscription. You may not post this document on blogs or any internal or external forums

without prior written authorization from Dassault Systèmes SolidWorks Corporation.

This document was updated using version SOLIDWORKS 2020 SP02. If you have questions

or need assistance in understanding the content, please get in touch with your designated

reseller.

 5

1) Preface

This SolidPractice document describes various factors that influence the performance of

Microsoft® SQL Server® as a component of a SOLIDWORKS PDM environment. The

document discusses aspects that you can influence when configuring and maintaining a

SQL Server installation (a SQL Server), and the best ways to identify and address

performance problems.

It is difficult to assign rigid rules in this area. However, a good understanding of all

available options is helpful when defining the best strategy for your specific requirements.

The expectation is that this document will be expanded and enhanced over a number of

versions, as field experience provides feedback on the most useful areas.

Unless otherwise noted, specific commands and screen images in this document refer to

SQL Server 2014. In most cases, the operations also apply to SQL Server 2017 or newer,

although some details may vary.

The topics cover mainly the SQL Server Standard edition when used with

SOLIDWORKS PDM Professional. When necessary, there are additional details about

the SOLIDWORKS PDM Standard and the SQL Server Express and Enterprise editions.

Your Feedback Requested
We would like to hear your feedback and your suggestions for new topics. After

reviewing this document, please take a few minutes to fill out a brief survey. Your

feedback will help us plan and deliver content that directly addresses your challenges.

https://www.surveymonkey.com/r/SolidPractices

 6

2) SOLIDWORKS PDM Architecture

Troubleshoot SQL Server performance if you are familiar with the SOLIDWORKS

Product Data Management (PDM) architecture. For example, most issues reported

involve SOLIDWORKS PDM applications. If you understand how those applications

work, it becomes easier to determine if a problem actually relates to SQL Server and if

following the current document guidelines are appropriate.

SOLIDWORKS PDM uses a server/client application based on the SQL Server that hosts

the application’s relational database. This means that SQL Server performance can

influence the performance of all SOLIDWORKS PDM server services and client

applications.

The SOLIDWORKS PDM main server components include the Database Server Service,

the Archive Server Service and SolidNetWork Licensing (SNL). Optionally, components

can include a Web Server Service or, the SOLIDWORKS PDM Web2 client (effective

with SOLIDWORKS 2015 SP3) that you configure using Microsoft Internet Information

Services (IIS). The Web2 client enables application access from multiple web browsers

and mobile devices.

SNL ServerArchive ServerSQL Server

PC Client

Figure 1: Minimal Setup

A SOLIDWORKS PDM setup can vary between simple configurations, as shown in

Figure 1, to more complex configurations like those shown in Figure 2, where

SOLIDWORKS PDM is in use with database replication and solutions such as Web2 and

the EXALEAD® OnePart business discover application. There are also cases where a

production environment has additional add-ins for Enterprise Resource Planning (ERP)

integration or for other third-party applications.

 7

SNL
Server

WEB
Server

Archive
Server

Primary
SQL Server

WAN

 SITE 1

Archive Server
Secondary
SQL Server

PC Client

 SITE 2

OnePart
Server

Mobile
DevicePC Client

Mobile
Device

Figure 2: Complex Setup

The main SOLIDWORKS PDM client application is SOLIDWORKS PDM File Explorer,

which is built on top of Windows® Explorer. Computer-aided design (CAD) applications

such as SOLIDWORKS, DraftSight®, AutoCAD®, or Inventor® have special add-ins

that enable the applications to access SOLIDWORKS PDM from within a CAD session.

There are other client applications for vault administration and configuration of the

archive server.

This SolidPractice makes frequent reference to SOLIDWORKS PDM components

without providing much detail. Therefore, having a good knowledge of SOLIDWORKS

PDM architecture is helpful to having a better understanding of the guidelines in this

document. To learn more about SOLIDWORKS PDM components, read the

SolidPractice: “SOLIDWORKS PDM Professional Architecture,” which is available on

the VAR Resource Center (VRC) website under Support > SolidPractices.

a) Additional Reading Material

There are many articles about SQL Server performance in the Microsoft Knowledge Base

(http://support.microsoft.com) and elsewhere. The techniques described in this document

to improve SOLIDWORKS PDM performance are based on generally accepted SQL

Server best practices. However, the converse is not necessarily true, in that not all generic

SQL Server performance best practices are beneficial to a SOLIDWORKS PDM system.

 8

3) Installation and Configuration

a) Overview

SQL Server performs best when using a dedicated server computer. As a best practice, do

not install other applications on the SQL Server computer. An exception to this

recommendation is the SOLIDWORKS PDM Database Server Service, which typically

runs more efficiently when installed on the same computer as SQL Server.

The following sections examine how the various aspects of SQL Server influence

performance.

b) Server Sizing

SQL Server available resources can influence the performance of SOLIDWORKS PDM

client applications. This is especially true over time as production SQL databases increase

in size. As this occurs, adjustments to the server configuration or resources may become

necessary. For implementations with tens or hundreds of active users, it is advisable to

have a server setup that allows an increase to the available CPU and memory. Most of the

supported virtual environments have options to adjust these resources dynamically.

It is not advisable to set up a new SQL Server based only on the minimum system

requirements. Instead, the setup should take into consideration the actual SQL workload

for CPU sizing, and the SQL database size increase trend for memory. After monitoring

usage of the main resources over one month of usage (see "How to make performance

baselines” later in this document), you can adjust the available resources as necessary.

The recommendation is to monitor resource usage at least once every year or when there

is a major change to the production environment. For example, when adding many new

PDM users, when using a new third-party PDM add-in, or after activating replication for

the database server or the archive server.

c) Operating System

SQL Server performs best when installed on a 64-bit server class of operating system.

Support for Windows Server® operating system (OS) versions varies depending on which

SOLIDWORKS PDM and SQL Server versions are in use. The following table depicts

OS support for recent versions of SOLIDWORKS PDM.

http://www.solidworks.com/sw/support/11168_ENU_HTML.htm

 9

 SOLIDWORKS Version

Operating System Version 2016 2017 2018 2019 2020

Windows Server 2019

2019 SP3

Windows Server 2016

2017 SP2

Windows Server 2012 R2

Windows Server 2012

Windows Server 2008 R2, SP1

With this in mind, you can determine which SQL Server platform supports your

SOLIDWORKS production environment. The following table defines SQL support for

recent SOLIDWORKS versions.

 SOLIDWORKS Version

SQL Server Platform 2016 2017 2018 2019 2020

SQL 2017

SQL 2016

SQL 2014

SQL 2014

SP3
SQL 2012

SQL 2008 R2

You should also consider operating system support for the SQL Server versions. For

example, SOLIDWORKS PDM 2017 supports both Windows Server 2016 and SQL

Server 2012. However, as shown in the following table, these two do not appear as a

supported configuration.

SQL Platform Windows Server

2008/2008 R2

Windows Server

2012/2012 R2

Windows Server

2016

SQL Server 2017

SQL Server 2016

SQL Server 2014

SQL Server 2012

SQL Server 2008 R2

For an up-to-date list of system requirements, go to the SOLIDWORKS website, and

navigate to Support > Hardware & System Requirements > SOLIDWORKS Product

Data Management.

 10

d) Recovery Model

When you create a database, SQL Server defaults to the Full recovery model. When using

the SQL Server Standard edition, the recommendation is to switch the default to Simple

recovery for a SOLIDWORKS PDM database. Be aware that when using database

replication, the recovery model must remain as Full mode.

For more information about recovery, see the following solution in the SOLIDWORKS

Knowledge Base:

S-029263 What is the difference between Simple Recovery and Full Recovery for the

Microsoft ® SQL Server Recovery Model option?

If you choose the Simple recovery model, you can restore only full or differential

backups. You cannot restore backups to any specific point in time. SQL Server truncates

the transaction logs when the database reaches a transaction checkpoint, and it leaves no

log entries for disaster recovery. You lose any modifications to the data added between

the last full or differential backup and the failure.

e) Processor

As a minimum requirement, the server must have an Intel® or AMD processor that

supports Streaming SIMD Extensions 2 (SSE2). The recommendation is to have a

processor with at least two logical CPUs.

It is also a best practice to use processors with higher core density, such as “Quad”

processors, because these processors handle SQL workload growth better. Such growth

occurs over time as the database size increases.

For large databases and especially for databases with tens or hundreds of active users, the

recommendation is to maintain an average CPU utilization under 50%. This helps prevent

a SQL Server from being affected by SQL CPU performance bottlenecks that occur when

CPU utilization approaches 75%. At this point, many PDM client applications become

sluggish. On very large vaults, this might lead to other side effects such as database

deadlocks and blocking chains.

You should always measure average CPU utilization during working hours. One of the

most efficient ways to lower the utilization is to increase the number of logical CPUs. For

example, a SQL Server with an average CPU usage of 60% and 4 cores will drop to 30%

when you increase the number of cores to 8 cores, and to 15% when you increase to 16

cores.

Increasing the number of cores does not mean that specific PDM operations will run

faster. Instead, the increase prevents performance issues caused by a high concurrency

and increases in the SQL workload.

https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-GRYR5H

 11

There are also other methods to lower CPU usage. For example, you can deactivate some

vault customizations. However, you must do this after breaking down the SQL workload

by PDM operations, and reviewing the results with the Support team.

i) Minimum logical CPUs based on the number of active users

You should consider the values in the following table only during the implementation

phase, and only for production environments where on average, a user creates more than

30 document versions per day.

Active Users Count Minimum Logical CPUs

Active users < 10 1

10 ≤ Active Users < 50 2

50 ≤ Active Users < 100 4

100 ≤ Active Users 8

After the SOLIDWORKS PDM implementation phase is over, you can adjust the number

of logical CPUs as long as the average CPU usage during working hours is less than 50%

and the CPU random spikes are under 70%.

ii) SQL Server editions CPU limitations

SQL Server Platform Express Standard Enterprise
SQL Server 2017 1 Socket or 4 cores 4 sockets or 24 cores OS Max

SQL Server 2016 1 Socket or 4 cores 4 sockets or 24 cores OS Max

SQL Server 2014 1 Socket or 4 cores 4 Sockets or 16 cores OS Max

SQL Server 2012 1 Socket or 4 cores 4 Sockets or 16 cores OS Max

SQL Server 2008 R2 1 Socket or 4 cores 4 Sockets or 16 cores 8 Sockets

f) Memory

Random Access Memory (RAM) is the key to SQL Server performance; the more RAM,

the better (faster) the performance of the database.

SQL Server uses RAM to cache stored procedures, execution plans, and data pages. If

there is enough RAM, the buffer pool can store enough compiled plans in caches for later

reuse and avoids unnecessary recompiling that may require more CPU.

 12

In a similar way, loading more data pages in the database buffer pool helps reduce and

avoid disk I/O. You can accomplish this by increasing memory to use more Logical I/O

(which is significantly faster) instead of Physical I/O. If you have more RAM available

than the size of your database, the entire database is cached into the buffer pool

eventually.

Important:

 The minimum requirement for a dedicated SOLIDWORKS PDM server with only

one SQL Server instance is 8 gigabytes (GB) of RAM.

 The available RAM should not be less than size of PDM database. If the database

size grows over time, add more RAM. Ideally, you want enough memory to

contain the entire database plus enough for the Windows OS (perhaps another

three GB).

 If additional applications or SQL Server instances share the same server, consider

adding more RAM.

 Consider extra capacity for future memory needs.

 When using physical servers, choose higher density memory chips to leave empty

slots for future growth.

i) RAM and Databases

Insufficient memory causes SQL Server to read data continually from the disk. Lack of

memory significantly affects query performance.

You can check memory usage by using the PDM Status Report tool > Performance >

Memory report to understand the memory usage by database, by indexes, and to obtain

an estimation of cache type.

This tool is available for Value Added Resellers (VARs) in the SOLIDWORKS

Knowledge Base solution S-066526. While customers do not have direct access to this

https://varportal.solidworks.com/prmportal_enu/start.swe?SWECmd=GotoView&SWEView=SW+KBase+Solution+View+(eChannel)&SWERF=1&SWEBU=1&SWEApplet0=SW+KBase+Solution+Form+Applet+(eChannel)&SWERowId0=1-2TTHYBJ

 13

tool, VARs can share the tool with customers on case-by-case basis.

The first thing to evaluate is if the most important database is using the most RAM. The

more RAM the database has allocated from the available RAM (assuming it is a restricted

commodity), the faster the performance of the database. If some nonessential databases

are using RAM, consider moving them.

ii) Sharing RAM

All databases on the server share the available RAM, and SQL Server manages which

databases receive RAM. There is no way to configure one database to use more or less

RAM than another database on the same server. There is also no way to specify that one

database receives a higher priority than another database. All databases receive equal

resources.

A common problem with SQL Server configurations is when Database Administrators

(DBAs) run test databases on the same server as the production databases. The DBAs

might think that this is not a problem because thousands of users are making thousands of

queries against the production databases and only a handful of users are accessing the test

databases. They might assume that the test databases will consume resources that are

 14

proportional to the number of users and queries that are calling them. This is true for CPU

resources. However, this is not true for the shared RAM.

For example, if a tester using a test database runs a query that selects all rows in a table,

and those rows are paged from the hard disk into RAM, this might cause the data in the

production database to be paged out of RAM and onto the hard disk. A split second later,

the thousands of users who are making thousands of requests make their queries, and the

production data must reload from the hard disk and back into RAM. In this case, the tester

is severely affecting the performance of the production queries even though the ratio of

work is 1 to 1,000. You can watch this happen by running such a query while working in

the different databases. Take note of the changes in the database sizes.

RAM is a precious resource that directly affects performance. As a best practice, do not

share RAM across databases that have different priorities.

iii) Limiting the memory that SQL Server can allocate

By default, SQL Server dynamically consumes memory based on available system

resources. It is possible that the SQL Server process sqlservr.exe will consume all

available memory, leaving the OS and other processes short of memory. To control this,

the SQL Server Maximum server memory option makes it possible to cap the amount of

memory that the SQL Server buffer pool can use. The default value for this setting is 2

TB, which is likely never reached.

To activate the Maximum server memory option:

1. Open SQL Server Management Studio and log in to the SQL Server.

2. Under Object Explorer, right-click the SQL Server name > Properties > Memory.

3. For Maximum server memory, specify a value (in MB). For example, to use a

maximum of 6 GB RAM, set the value to 6000. You can apply the setting without

restarting the service.

A similar Minimum server memory option is also available. The recommendation is that

you use the default value of 0 (zero) for this option.

 15

iv) Memory limitation by SQL Server edition

The following memory limitations apply per SQL Server edition and version.

SQL Platform Express Standard Enterprise

SQL Server 2017 1410 MB 128 GB OS Max

SQL Server 2016 1410 MB 128 GB OS Max

SQL Server 2014 1 GB 128 GB OS Max

SQL Server 2012 1 GB 64 GB OS Max

SQL Server 2008 R2 1 GB 64 GB OS Max

g) Disk Configuration

Storage Area Network (SAN) is storage on a remote computer that appears locally

attached to the OS. For performance reasons, avoid using SAN as the disk storage for

SQL Server, if you share the storage with other applications. For more information about

this scenario, see the following Knowledge Base solution:

S-056773 When using a storage area network (SAN) what could cause SOLIDWORKS®

PDM performance issues?

Redundant Array of Inexpensive Disks (RAID) storage is locally attached to the computer

running the operating system. In a SOLIDWORKS PDM environment, consider using

hardware-based RAID. Do not use software-based RAID.

i) Database size limitations for SQL Server editions

SQL Server Platform Express Standard Enterprise

SQL 2017 10 GB 524 PB 524 PB

SQL 2016 10 GB 524 PB 524 PB

SQL 2014 10 GB 524 PB 524 PB

SQL 2012 10 GB 524 PB 524 PB

ii) File architecture

SQL Server databases for SOLIDWORKS PDM use two types of physical files for data

storage:

 Primary data files

The primary data file is the starting point of the database and points to the other files in

the database. Every database has one primary data file. The recommended file name

extension for primary data files is .MDF. There can also be secondary data files (usually

with the extension .NDF) which, when combined with the primary MDF file, are known

as a filegroup.

https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-11F439P

 16

 Log files

Log files hold all of the logging information that system uses to recover the database.

There must be at least one log file for each database, although there can be more than one.

The recommended file name extension for log files is .LDF.

By itself, SQL Server does not enforce the MDF and LDF file name extensions. However,

these extensions help identify the different kinds of files and their use.

In a SOLIDWORKS PDM system, you find the following physical files:

Datafile Name Logfile Name Description

master.mdf mastlog.ldf Standard SQL Server database

model.mdf modellog.ldf Standard SQL Server database

MSDBData.mdf MSDBLog.ldf Standard SQL Server database

tempdb.mdf templog.ldf SQL Server temporary database

ConisioMasterDb.mdf ConisioMasterDb_log.ldf SOLIDWORKS PDM master database

<Vault_Name_1>.mdf <Vault_Name_1>_log.ldf SOLIDWORKS PDM Vault 1 database

<Vault_Name_2>.mdf <Vault_Name_2>_log.ldf SOLIDWORKS PDM Vault 2 database

Creation of each SOLIDWORKS PDM vault generates the initial MDF and LDF files

based on the default values. It is these files that you want to work on to optimize

performance. The vault-specific data files and the tempdb database (tempdb) files

(discussed later in this document) are the only files to consider from a performance

viewpoint.

iii) Optimizing the database files

If you want to run a big SQL Server database and maintain high performance, begin by

sizing up the database files. Pre-sizing the database files appropriately enables the best

SOLIDWORKS PDM performance.

When you create a database for the first time, do the following:

 Create the files in a contiguous space that is defragmented.

 Make all database files the same size.

 Make the database files as large as you anticipate you will ever need.

To defragment the hard disks, you can use a standard operating system disk utility like

Disk Defragmenter, which is included in the Windows Server operating system. However,

be careful if database files already exist on the drive, because the disk defragmentation

process moves pieces of your database files around, which causes internal fragmentation

of the files. If this happens, rebuild your indexes after defragmenting the drive.

 17

iv) Multiple database files

You might choose to add extra data storage by creating additional data files, rather than

by extending the single data file that the installation creates as a default. You can use SQL

Server Management Studio to accomplish this.

Alternatively, you can also use a SQL command similar to the following:

--Create additional data file

ALTER DATABASE VAULT_2011

ADD FILE (NAME = Vault_2011_2,

FILENAME = 'C:\Program Files\Microsoft SQL

Server\MSSQL10_50.SQLINST\MSSQL\DATA\Vault_2011_1.ndf',

SIZE = 16 MB) ;

GO

This approach to creating additional data files within the filegroup only improves

performance if you can place the data files on separate physical disks. If this is not

possible, then extending and defragmenting the single data file will have the same effect.

If a filegroup contains more than one file, ensure that all files in the filegroup are the same

size. Doing this changes the SQL Server extent allocation strategy and creates the entire

extent in a single file. SQL Server allocates space sequentially in extents, or units, of 64

KB. It uses a "proportional fill" strategy, which means that SQL Server tries to keep all of

your database files at the same percentage of fill.

If all of your database files are the same size, SQL Server allocates 64 KB in the first file,

then moves to a second file and allocates 64 KB, and so on until it wraps back around to

the first file, where it begins these allocations again. This type of allocation provides the

best overall performance. However, if you have files that differ in size, SQL Server tries

to maintain the same percentage of empty space in each file by allocating extra extents to

the larger files. This uneven file allocation may put all the most recent data in one large

file, causing a "hot spot" for the retrieval of that data. This is not ideal. A logical

 18

consequence of this point is that the Autogrow function is not helpful here. If one file

grows enough to initiate an autogrow, the file will no longer be the same size as the other

files in the filegroup. To avoid this situation, monitor the capacity of each of the files, and

when necessary, manually extend ALL of the files in the filegroup.

v) Understanding RAID for SQL Server

When designing your database server, choosing the right number of hard drives and the

correct RAID configuration can save you a lot of time. If you make a mistake, changing

the RAID configuration and moving the database later to correct problems on a deployed

server will cause long downtimes and consume IT resources.

Before discussion about how to distribute files across disk volumes, here is a brief

description of the different types of RAID configurations:

vi) Software RAID

Some operating systems provide a software-based emulation of RAID behavior. As a best

practice, do not use software-based RAID as a substitute for an actual hardware RAID

implementation to support SQL Server. Software-based RAID provides no performance

improvement and is likely to cause additional load on the CPU.

vii) Hardware RAID

RAID is the simulation of a single disk over more than one physical disk drive. There are

different methods of performing this simulation, called “levels.” Each RAID level has

advantages and drawbacks. This section discusses how each level relates to SQL Server.

 RAID Level 0

RAID level 0, also known as disk striping, divides the data into blocks and spreads the

data in a fixed order across all disks in an array. RAID 0 improves read and write

performance by spreading operations across multiple disks.

Another way to think about RAID 0 is that a single write happens on only one disk, and

reads can occur asynchronously across all physical disk heads in the array.

Because your data is valuable, remember that RAID does not always mean “data

protection.” RAID level 0 does not provide redundancy and does not protect against disk

failure. Do not rely on RAID 0.

 RAID Level 1

RAID level 1 is known as disk mirroring because it uses a disk file system called a mirror

set. Disk mirroring provides a redundant, identical copy of a select disk. All data written

to the primary disk also writes to the mirror disk. RAID 1 provides fault tolerance and

generally improves read performance although it may degrade write performance. There

is a small performance hit at write time to write to two disks. However, there is an

 19

advantage at read time when there are two possible sources of the data, so results return

more quickly. For a SOLIDWORKS PDM database, which reads more than it writes, this

is a significant advantage.

RAID 1 is very suited to SQL Server. It is fast and provides data protection.

However, there are some disadvantages to using RAID 1. It uses two hard disks of

identical sizes, which can have several drawbacks. The first drawback is that the size of

the logical disk is the same as the size as one of the physical disks. In other words, you

pay for two disks, and can only use the storage size of one.

Another more important drawback is that you can only store files of up to the size of one

of the disks on the logical disk. For example, if you have two 185 GB drives in a RAID 1

configuration, you end up with a single logical drive of 185 GB. In this example, the

maximum file size that you can store on the disk is less than 185 GB. Because your

largest database files are the MDF file (which holds the data) and the LDF file (which

holds the transaction logs), you need to make sure that these files do not exceed the size

of the RAID 1 logical drive.

One way to prevent data from exceeding the size of the RAID 1 drive is to create a

secondary (NDF) database file of an equal size on another RAID 1 logical drive set. This

divides the data in the database between the two files.

You can prevent the transaction (LDF) log file from becoming too big by making frequent

backups of the transaction log. This makes it possible to store the log on a reasonably

sized disk. The backup file for the transaction log file has the file extension .TRN.

 RAID Level 5

RAID level 5 is also known as striping with parity. The parity information provides data

redundancy. RAID 5 arranges the data and parity information on the disk array so that the

two types of information are always on different disks. A RAID 5 configuration allows

more than two physical drives in the RAID configuration. In fact, with RAID 5, there is

no benefit until you have three or more drives. The data writes to all drives at the same

time. However, data reads occur from any of the drives without involving the other

physical drives in the array.

The amount of storage on the logical drives is equal to the sum of all available physical

disk storage minus one disk. For example, if you have three 185 GB drives, you have 370

GB of logical storage (3 x 185 – 185). With four 185 GB disks, you have 555 GB of

logical storage (4 x 185 – 185). This makes it possible to design any size logical drive to

fit even the biggest database file.

The issue with RAID 5 is that adding disks to the array increases the cost of writing data.

One poor approach is to assign all of the physical disks on the server into one large RAID

5 drive. The thought behind this approach is that the IT administrator and the DBA would

 20

never have to worry about individual drives running out of room, about disproportionate

file growth across separate arrays, or about having to move and manage files.

The reason this approach is a bad idea is that each write to the RAID is committed on all

disks, no matter what data is written (such as database data files, transaction logs,

Windows virtual file, or other data). Therefore, for a computer that is running SQL

Server, it is not a good approach to use RAID 5 arrays over a large number of disks.

 RAID Level 10

RAID level 10 is also known as mirroring with striping. RAID 10 uses a striped array of

disks that then mirror to another identical set of striped disks. For example, consider

creation of a striped array of five disks. This striped array of disks is then mirrored by

using another set of five striped disks. RAID 10 provides the performance benefits of disk

striping with the disk redundancy of mirroring. RAID 10 also provides the highest read-

and-write performance of any RAID level, at the expense of using twice as many disks.

RAID 10 represents the best of both worlds. It offers fast write times and infinitely large

logical drives. The extent of your ability to deploy RAID 10 is dependent on the drives

that you have. The minimum number of drives for RAID 10 is four. In some cases, having

two sets of RAID 1 drives perform better than dedicating all four of those drives to a

single RAID 10 array.

For RAID 1, you need at least two physical drives; for RAID 5, you need at least three

drives; and for RAID 10, you need at least four drives. The optimal RAID level for your

SQL Server file subsystem depends on the number of drives that you have available and

the data that you want to store. The next section discusses how the count of physical disks

affects your SQL Server configuration and your RAID choices.

viii) How many hard drives do I need to support SQL Server?

The most appropriate RAID configuration and best method to distribute the database files

depends on the number of hard drives available in your server. The number of hard drives

you want to deploy is probably a matter of economics as well as performance and

robustness. There is no simple “best” arrangement because there must be an element of

compromise between the conflicting factors.

For perspective, the following scenarios illustrate how to best utilize the available

hardware resources.

 One drive

If you have a single drive, you will experience major performance issues. A single drive

does not provide redundancy of your file system, and you cannot use RAID. SQL Server

runs on a single disk, but doing so compromises both performance and robustness.

 21

If you must use a single disk drive, make sure that you use the fastest drive available (the

shortest seek time) and that you defragment the drive regularly.

 Two drives

With a two-drive SQL Server installation, you can deploy RAID 1 (disk mirroring). In

this scenario, all data (Windows, SQL Server, database data files, transaction logs, and

tempdb files) goes onto the one logical drive. This deployment is fast and redundant;

however, it creates a bottleneck around the disk I/O.

When it comes to hardware, the disk subsystem has the potential to become the greatest

bottleneck to SQL Server.

The speed of the disk drives and the ability of the drives to read and write data are the

main factors that cause a server running SQL Server to experience slow performance. In

other words, the more disk heads you have, the faster the server will perform. Therefore,

while two drives that use RAID 1 create a safe environment, it is best to have as many

disk heads (physical disk spindles) in your deployment as possible.

A better alternative is to distribute the load across the two disks without using RAID. This

method trades robustness for performance. In this case, allocate the one disk drive to the

 22

database data (MDF) files. Everything else including the operating system, the tempdb

files, the virtual paging file (an operating system file), and the transaction log go onto the

primary drive.

 Three drives

With three drives, you can deploy RAID 5, which provides better performance for reading

data. However, the drawback is a decrease in performance when writing data. RAID 5

also uses more physical disk space than with a two-drive deployment.

A more likely scenario is to gain the read and security benefits by using a RAID 1 array

for all the database files. This means trading this robustness against the likely disk

contention.

If you can manage the risks around reducing robustness, you can achieve better

performance by spreading the files across separate disk spindles.

 23

 Four drives

With four drives, things get interesting. You could deploy RAID 10 and create one logical

drive that holds all data (Windows, SQL Server, the database data files, the transaction

log, and the tempdb files). This is very tempting because there is a lot of publicity about

the benefits of using RAID 10.

However, it is better to deploy two sets of RAID 1 arrays, which give you two logical

drives. This way, you can move the database data for SOLIDWORKS PDM to the second

logical drive, and keep the tempdb files, the virtual paging file, and the transaction log on

the first logical drive. Typically, the system does not access the virtual paging file very

often.

Another option is to not use RAID at all. Instead, you could spread the data over four

physical disks. This option maximizes speed, but the system is less robust.

 Five drives

With five drives, you could deploy two of the drives in a RAID 1 array and the other three

in a RAID 5 array. This scenario provides two logical drives. Like the four-disk scenario,

you want to separate the database for SOLIDWORKS PDM from the rest. Therefore,

 24

move the database data (MDF) files to the RAID 5 array, and leave everything else

(including the operating system installation) on the RAID 1 array.

Alternatively, you could use four disks to configure two RAID 1 arrays for the main

working files. This leaves the remaining drive for the program files and the OS.

 Six drives

The availability of six drives provides many more options for RAID configuration. Six

disks perform better than any of the previous scenarios. With six drives in your physical

server, you gain the best performance by setting up three arrays of two disks per array in a

RAID 1 configuration. Make sure that at least one of the arrays has enough room to hold

your MDF file with room to grow. One array should hold the MDF file for

SOLIDWORKS PDM and nothing else. One array should hold the transaction log (LDF)

files and nothing else. The last array (drive C:) should have everything else, including the

operating system installation and the tempdb files.

 Seven drives

Seven drives allow you to store more data than six drives because you can add the extra

drive to one of the arrays, and configure it as a RAID 5 array. Therefore, you still have

 25

three arrays, two arrays with two drives in RAID 1, and one array with three drives in

RAID 5. On the RAID 5 array, you have the database (MDF) files for SOLIDWORKS

PDM. On one of the RAID 1 arrays, you have the transaction log files. The last array

(drive C:) should have everything else, including the operating system installation and the

tempdb files.

 Eight drives

With eight drives, you can create four RAID 1 arrays. You can then put the database files

on one array; the transaction logs on another array, the tempdb files on a third array, and

everything else on the fourth array (drive C:). This is a very powerful configuration.

 Summary

The general best practices for disk setup are:

 Place the database (MDF and NDF) files on their own RAID 1, 5, or 10 arrays or

Logical Unit Number (LUN) for SAN.

 Place the transaction log (LDF) files on their own RAID 1 array or LUN.

 26

 Place the tempdb data on its own RAID 1 or 10 arrays or LUN for a large

database.

 Place the operating system and SQL Server binaries on a RAID 1 array.

h) Configure Tempdb

Tempdb is an internal built-in database that SQL Server uses to manage temporary objects

such as temporary tables, sort tables, and various other objects. Depending on the loading

and usage patterns for a given environment, the configuration of tempdb can become a

factor in overall performance. The key factors that can improve performance are as

follows:

 Move tempdb files from the default location to one or more fault-tolerant disks.

 Where practical, give tempdb dedicated use of disks.

 Configure the startup size of tempdb to minimize autogrow.

 Create multiple data files for tempdb to reduce contention.

i) Move tempdb files

By default, tempdb files are located in the same directory as other system databases for

SQL Server. For a busy server, this can affect performance. Therefore, consider moving

tempdb files to a high-performance, fault-tolerant disk volume such as RAID 1 or RAID

10 arrays on fast disks. As a best practice, do not place tempdb files on a RAID 5 array,

because RAID 5 has inferior write performance.

You use the ‘ALTER DATABASE statement to move tempdb files. For example, to

move tempdb files to the G: drive and the transaction log files to the H: drive, open a

SQL Server Management Studio query window and perform the following commands:

ALTER DATABASE tempdb

MODIFY FILE (NAME = tempdev, FILENAME = 'G:\SQLData\tempdb.mdf');

GO

ALTER DATABASE tempdb

MODIFY FILE (NAME = templog, FILENAME =

'H:\SQLData\templog.ldf');

GO

For this change to take effect, you must restart SQL Server. Note that SQL Server creates

fresh copies of tempdb data and log files every time the service starts. Therefore, you do

not need to move the actual files manually. The service restart creates files in the new

locations that you specify.

ii) Use Multiple, dedicated disks

If your server has sufficient disk resources, follow the typical best practices for database

file placement for the tempdb files. The following table summarizes these best practices.

 27

Available for tempdb Strategy

One disk Place all tempdb data and log files here, preferably with no

other heavily used files on this volume.

Two disks Place the tempdb log on one volume. Place all tempdb data

files on the other volume.

More than two disks Place the tempdb log alone on one volume. Distribute

tempdb data files evenly across the remaining volumes.

iii) Configure tempdb size

SQL Server uses the tempdb database in a very dynamic way. The server is constantly

adding and removing structures within tempdb. At any given time, an operation might

cause a (relative) spike in the required size of the database. If tempdb starts out too small

for your typical workload, the result may be a large number of frequent autogrowth

operations in tempdb. This can have two negative effects. First, when autogrowth occurs,

performance can suffer. Second, multiple small autogrowth operations result in heavy

fragmentation of the data files. From that time on, there is a degradation of tempdb I/O

performance.

To avoid these problems, proactively specify the size of tempdb as appropriate for the

environment. There is no fixed rule for the size of tempdb. It depends on the environment.

Two approaches are possible. The first approach is to use an arbitrary rule of thumb and

specify a large size for tempdb at the time of installation. For example, specify 2 GB for

the database size, and specify 1 GB for the log file size.

The second approach involves observation of the environment in action. This starts with

leaving the tempdb sizes at their default level with autogrowth enabled. After a reasonable

period of observing the production activity (one or more weeks), the DBA checks the

amount of space that tempdb uses. To view the size of tempdb, open SQL Server

Management Studio and use the Standard Reports option accessible through the Object

Explorer pane.

 28

The DBA can use the size to which the tempdb data and log files have grown as a good

indicator of the target size. Adding a 20% buffer can help ensure minimization of

autogrowth.

With this target size in mind, use the ALTER DATABASE command to reset the size of

tempdb. The following example command sets the database size at 12 GB and the log file

size at 10 GB.

ALTER DATABASE tempdb

MODIFY FILE (NAME = 'tempdev', SIZE = 12288);

ALTER DATABASE tempdb

MODIFY FILE (NAME = 'templog', SIZE = 10240);

Finally, whatever size you choose for tempdb, it is good practice to leave autogrowth

enabled on the database. It is the intention to avoid autogrowth if possible, but it is wise to

have autogrowth available so that tempdb does not run out of space in an emergency.

For more about tempdb, read the article “TempDB Database” at the following Microsoft

Online Docs website:

https://docs.microsoft.com/en-us/sql/relational-databases/databases/tempdb-

database?view=sql-server-ver15

iv) Create multiple data files

By default, the tempdb database has one data (MDF) file and one log (LDF) file.

If you have a multiple-core server and observer contention around tempdb, you have an

option to increase the number of files in tempdb. This can reduce contention in SQL

Server internal allocation routines that relate to tempdb.

 29

The number of data files that you should allocate in the tempdb database depends on the

number of CPUs (logical or physical) present in the server computer. When SQL Server

accesses a database, it starts a scheduler thread for each data file present. Therefore, if you

have two CPUs in your physical server, the tempdb database should have two data files to

“load balance” the threads.

ALTER DATABASE [tempdb]

ADD FILE (NAME = 'tempdev1',

FILENAME = 'f:\tempdb1.ndf' ,

SIZE = 8192KB , FILEGROWTH = 10%)

ADD FILE (NAME = 'tempdev2',

FILENAME = 'f:\tempdb2.ndf' ,

SIZE = 8192KB , FILEGROWTH = 10%)

There are essentially five points to consider when doing this:

 Strive for one tempdb data file per processor core that is available to SQL Server.

 Maintain an equal size for the data files. SQL Server uses a proportional fill

algorithm. Equal size files allow this algorithm to run most efficiently.

 To maintain data files at equal sizes, ensure that the data files have the same

autogrowth settings.

 The data files do not need to be on separate physical disks. This recommendation

does not depend on splitting I/O across disk devices, but instead exploits the

internal I/O and allocation algorithms of the database engine. This differs from the

usual guidance for user database files.

 There is no need to create multiple log files.

v) Summary

To summarize the options, consider the following example:

The disk configuration for a server allows you to dedicate two RAID 1 arrays to tempdb

(drives G: and K:). The SQL Server software installation is on the C: drive. The server

has four processor cores, and all are in use by SQL Server. You decide to set the tempdb

size to accommodate a total of 10 GB for data and 5 GB for the transaction logs.

With this in mind, you would run the following T-SQL script in SQL Server Management

Studio:

 30

--Move and size the tempdb log

ALTER DATABASE tempdb

MODIFY FILE (NAME = templog, FILENAME = 'K:\SQLData\templog.ldf',

SIZE = 5120MB);

GO

--Move and size the default data files

ALTER DATABASE tempdb

MODIFY FILE (NAME = tempdev, FILENAME = 'G:\SQLData\tempdb.mdf',

SIZE = 2560MB, FILEGROWTH = 10%);

GO

--Create additional data files

ALTER DATABASE tempdb

ADD FILE (NAME = tempdev2, FILENAME = 'G:\SQLData\tempdev2.ndf',

SIZE = 2560MB, FILEGROWTH = 10%);

GO

ALTER DATABASE tempdb

ADD FILE (NAME = tempdev3, FILENAME = 'G:\SQLData\tempdev3.ndf',

SIZE = 2560MB, FILEGROWTH = 10%);

GO

ALTER DATABASE tempdb

ADD FILE (NAME = tempdev4, FILENAME = 'G:\SQLData\tempdev4.ndf',

SIZE = 2560MB, FILEGROWTH = 10%);

GO

After running this T-SQL script, you must restart SQL Server for the changes to take

effect.

i) Database Replication

Database replication requires the SQL Server Enterprise edition, and uses a primary

instance of SQL Server for read and write operations. Remote sites will have at least one

secondary SQL Server instance for read-only operations.

There are specific requirements when using database replication. For example, always set

the recovery model to Full, and use special maintenance indexes that avoid locking

database resources, etc.

For detailed information about configuring database replication, see the Knowledge Base

solution S-072960 “Using SOLIDWORKS PDM 2017, what are the recommended steps

to set up and configure SQL Server Enterprise edition for database replication?”

j) Configure SQL Services

The following recommendations apply primarily for the SQL Server Standard and

Express editions.

 Although your planning phase should determine what SQL services you need to

install, there might be occasions when you roll out a service that is not a current

requirement. Perhaps your business requires you to install a SQL Server, and

although the reporting functionality is not necessary, management insists that you

https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-69ZBU5O

 31

install the Reporting Services – “just in case”. To improve performance in cases

such as this, disable services that you do not use.

 One example of a service that you can disable is the SQL Server Browser

service, which SQL Server installs by default. If you are not running named SQL

instances, or if you plan to install multiple instances on one computer, you can use

the SQL Server Configuration Manager to safely disable this service as depicted in

the following image:

Another service that you can disable is the SQL Server VSS Writer service.

Unless you are using applications that make use of the Windows Volume Shadow

Copy infrastructure to back up SQL Server databases, you can disable this service

safely. Be aware that the SQL Server VSS Writer service is not available from

the SQL Server Configuration Manager. To access this service, open the Windows

Services app as shown in the following image.

 While you should disable non-essential services, other services like the SQL

Server Agent service are designed to run continuously. This is because scheduled

backups, maintenance plans, replication, and jobs are dependent on the SQL

Server Agent service. Similarly, if your server is will run SQL Service Integration

Service (SSIS) packages, make sure that the SQL Service Integration Services

 32

service starts automatically every time the server starts. You can configure the

startup property of a service from the SQL Server Configuration Manager.

 Another thing that is not available in the SQL Server Configuration Manager is the

recovery behavior of SQL Services. For example, what should happen if services

fail unexpectedly? To manage this behavior, access the service Properties from

the Services app or from the control panel. The Recovery tab of the service

Properties page allows you to define actions for the computer to take if the

service fails once, twice, and for subsequent failures. From here, you can specify

that the service will restart automatically if it fails, as shown in the following

image.

You can also specify the same type of behavior on the Properties page for the SQL

Server Agent service. In this case, you can specify that the SQL Server service or the

SQL Server Agent service restart automatically if they stop unexpectedly.

 33

k) Configure Error Logs

The SQL Server error log is the first place that DBAs look when they troubleshoot server

related issues. By default, the server maintains six logs as archive and one log as current.

Every time the SQL Server service starts, the system begins a new log file. The name of

the log file that is currently active is ERRORLOG. The log file before restart (the

previous ERRORLOG) becomes archived as ERRORLOG.1, the log file before that

(with the name ERRORLOG.2) becomes ERRORLOG.3 and so on.

An annoying thing about the default error log behavior is that any one file can contain a

number of days of entries. When you try to view a file, it can take some time to load. If

you are interested in the events of a particular day, you need to browse through the entries

or use a filter.

In addition, log files are overwritten in a rolling fashion after six files are created. That

means that you there is no history earlier than the oldest log file (ERRORLOG.6).

To mitigate the default behavior, you can configure SQL Server to maintain a predefined

number of log files. You can also create a scheduled job to “recycle” the error logs

regularly. Recycling means that SQL Server will start a new log file without restarting the

service.

To keep a predefined number of archived logs, use the Configure SQL Server Error

Logs feature in SQL Server Management Studio. In the following image, the server is set

to keep the last thirty log files.

After configuring this property, you can create a scheduled job to run every day to

reinitialize the log. The job will have a single step that calls the sp_cycle_errorlog system

stored procedure, as shown in the following image. This procedure starts a new error log

file without restarting the SQL Server service. You could schedule the job to run at 12:00

AM every morning.

 34

The combined effect of these two changes is that the system will create one new log file

every day at midnight. If your server does not restart in between, you will have the last

one month of log entries on the disk with each day’s log in a separate file.

You can define the same kind of job for the SQL Server Agent error log files. The latest

SQL Server Agent error log has the name SQLAGENT.OUT. Running the SQL Server

sp_cycle_agent_errorlog procedure from a job creates a new SQL Server Agent log file

and archives the previous file. However, unlike the SQL Server error logs, there is no user

interface that allows you to specify the number of SQL Server Agent error logs to keep in

the archive.

i) Regular maintenance activities

For the SQL Server Standard and Enterprise editions, you can automate many of the

regular maintenance activities by using SQL Server tools called Maintenance Plans.

The SQL Server Express edition does provide any maintenance options. To work around

this, you can use SQL Server Management Studio Express to create scripts, and then use

the Windows Scheduler to run the scripts as tasks. For such an example, see the

Knowledge Base solution S-072048.

ii) Overview of SQL Server maintenance plans

The DBA can create a database maintenance plan either by using the Maintenance Plan

Wizard or by using the SQL Server Integration Services (SSIS) designer. Using the

Maintenance Plan Wizard, you can create basic maintenance plans for all system and user

databases. However, creating an enhanced workflow might require that you use the SSIS

designer.

This section outlines the different types of maintenance plan tasks that are appropriate for

a SOLIDWORKS PDM environment.

To create and manage maintenance plans, you must be a member of the sysadmin fixed

server role because maintenance plans are only visible to users who are members of this

role.

https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-5M12K9W

 35

 Back Up Database Task - This task allows you to perform different types of

database backups such as Full, Differential or Transactional Log, which are

based on the recovery model of the System or User databases.

 Check Database Integrity Task – You can use this task to check the allocation

and structural integrity of all user and system tables within a database. This task

also has an option to check the allocation and structural integrity of all indexes

available within a database. Using this task, you can choose the database against

which you want to perform the database integrity checks. This task internally runs

the DBCC CHECKDB statement.

 Execute SQL Server Agent Job Task – You can use this task to run a SQL

Server Agent job that you create on the SQL Server Instance. This task is only

available when you use the SSIS designer to create maintenance plans.

 Execute T-SQL Statement Task – You can use this task to run Transact SQL

queries against a database. This task is only available when you use the SSIS

designer to create maintenance plans.

 History Cleanup Task – This task deletes historical data that relates to database

backups and restore activities, SQL Server Agent job history, database

maintenance plan history, etc. This task uses the sp_delete_backuphistory system

stored procedure to clean up the history prior to the number of days, weeks, or

months from the current system date.

 Maintenance Cleanup Task – You can use this task to remove older files such as

maintenance plan execution reports, database backup files, etc. Use this task when

you create maintenance plans because the task removes old files that are no longer

required.

 Notify Operator Task – You can use this task to send messages to the SQL

Server Agent Operator when a task completes successfully or fails. The operator

can receive notification by email, pager, or by the net send method. There is more

discussion of this in the “Set up performance alerts” section of this document.

 Reorganize Index Task – Use this task to defragment and compress clustered and

non-clustered indexes on tables and views. Reorganization of these indexes is best

suited when the indexes are not heavily fragmented. This process takes less system

resources than rebuilding an index. If the indexes are heavily fragmented then the

best choice is to rebuild indexes.

 Rebuild Index Task – You can use this task to organize information on the data

and index pages by rebuilding the indexes. This helps to improve the performance

of index seeks and index scans. This task also optimizes the distribution of data

and free space on the index pages, thereby allowing faster future growth. If you

use this task to rebuild the indexes in a single database, then you can choose the

views and tables for which you want to rebuild the index. This task also has

options such as Sort results in tempdb and Keep index online while re-

indexing. However, these operations require sufficient disk space in the tempdb

database because the index is effectively duplicated for the duration of the

operation.

 Shrink Database Task - You can use this task to reduce the disk space that the

database and log files consume by removing the empty data and log pages. When

 36

using this task, the space freed up by shrinking the database can be returned to the

operating system, or it can be retained within the database for future growth.

 Update Statistics Task - This task ensures that the query optimizer has up-to-date

information about the distribution of data values within the tables. This

information makes it possible for the optimizer to apply the best strategies for data

access strategies.

iii) Daily tasks

 Back up the SQL Server database by using a SQL Server Maintenance Plan.

 Back up Archives by using a specific backup tool or a custom script.

 Back up the SOLIDWORKS PDM environment by using a scheduled task in the

Archive Server Configuration tool.

 Move file backups to a secure location, such as away from the SQL Server and

Archive server hardware. Do not leave file backups on the source disks or

computers.

iv) Weekly and monthly tasks

 Schedule a reorganization and rebuild of indexes by using a SQL Server

Maintenance Plan.

 Review the MDF and LDF files to ensure that they do not exceed the initial sizes.

 Check for disk fragmentation.

v) Quarterly tasks

 Check the integrity of the SOLIDWORKS PDM backup strategy, including the

SQL Server backup, by restoring and testing a recent system backup in a test

environment.

vi) Set up performance alerts

There may be cases where the DBA wants to monitor some system resource in a more

proactive way. For example, the DBA might want to review the log files once a month. It

is possible to configure SQL Server to monitor various parameters actively, and to take

specificed actions such as sending an email notification, when the parameter exceeds the

predefined limit.

The process of setting up such an email alert is described in this Solution:

S-027967 “Is there a way to set up performance email alerts to help monitor a

SOLIDWORKS® PDM file vault database in Microsoft® SQL Server?”

https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-GC1ROK

 37

4) Investigating Performance Problems

a) Overview

When poor performance is discovered or reported, there are several areas that you may

need to investigate first:

 Check network performance (LAN & WAN)

 Check user authentication

 Check for additional system loading such as new software or new hardware

 Consider reproducing the issue while tracing SQL traffic. If the trace file shows

trace events that have a long duration, it means that there is a SQL performance

issue. For this task it is recommended to follow the steps in the Knowledge Base

solution S-057205.

 Rule out if the issue is SQL related by using a half-splitting testing scenario

where you test the same issue both outside and inside a PDM vault.

This document assumes that you have investigated and eliminated those other potential

performance problems until only the SQL Server performance possibility remains.

b) Troubleshooting Methodologies

The following troubleshooting process is a guideline that you can use in conjunction with

other methodologies or third-party diagnostics and troubleshooting tools.

These methodologies involve troubleshooting tools that are not advisable to use if the

SQL Server average CPU utilization is above 90%. For such scenarios, it is best to report

the issue to SOLIDWORKS Technical Support and determine if the current methods still

apply.

i) Setup check

When troubleshooting SQL Server performance, it is a strong recommendation that you

start by confirming that the SQL Server and the SOLIDWORKS PDM vault have the

correct configurations. In other words, determine if the configurations adhere to the main

guidelines from the “Installation and Configuration” chapter.

The best practice to automate the setup check is to involve your local support and use

tools such as the SOLIDWORKS PDM Status Report tool (available for VARs in the

Knowledge Base solution S-066526) that include Diagnostics and Performance reports

that can help identify some of the most common SQL Server performance issues. To use

the SOLIDWORKS PDM Status Report tool, connect to a vault and run one or more

reports. To access additional technical details for the main reports, click the Find out

more links within the application.

https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-12A9B4X

 38

ii) Collecting performance data

The preferred method of measuring SQL Server performance data is to use Microsoft

solutions such as Windows Performance Monitor, SQL Server Extended Events, or SQL

Server traces.

SOLIDWORKS Technical Support recommends the following three methods of data

collection. There is more information about these methods later in this document:

 Windows Performance Monitor collection set – It is a strong recommendation to

use this collection set with few counters and a one-minute sampling. For more

information, see the “Monitoring performance at all times” section of this

document.

 Tracing random performance indicators such as database locks, deadlocks reports,

and blocked processes reports. This method has the advantage that it can run

continuously for months. In some cases, it might help identify a performance issue

without the need to start a SQL workload trace.

 SQL Workload tracing – This is one of the most detailed collection sets. In some

cases, this method can help identify if a specific SOLIDWORKS PDM operation,

client computer, application, or file set is the cause of the issue.

 39

The following diagram explains how to use these data collection methods depending on

how the issue is reproducible in a production environment.

 How can you reproduce the problem?

Important:

 For reference crosschecking of SQL events, it is a best practice to collect and

review the following logs with the Support team: SQL Server logs,

 40

SOLIDWORKS PDM client and service logs (COG files), and Windows

Application logs (EVTX files).

 Random problems or problems that occur when CPU utilization exceeds 60%

require SQL workload tracing. A DBA or a SOLIDWORKS PDM administrator

that is familiar with SQL Server Extended Events and SQL server side tracings

should perform this task.

 Before reporting an issue that is reproducible at any time to Technical Support,

confirm that the problem is also reproducible in a test environment.

 For most performance cases, the data mentioned in this section should be enough

to understand the main SQL performance issues. However, in some complex

cases, Technical Support could ask to adjust the collection sets or to repeat the

data collection with a different server or database configuration.

 In cases where the collected data cannot help identify the performance issue, the

recommendation is to work directly with end users and review their actual

complaint. This may reveal that the actual problem might not relate to only the

SQL Server performance.

iii) Analyzing performance data

Following the process in the previous section ensures the collection of all main key

performance indicators for SQL Server. In addition, SQL trace (TRC file format) or

Extended Events sessions (XEL file format) include details with the SQL query

execution.

As a general rule, the more deadlocks, blockings reports, and high CPU usage that are in

evidence, the worse the overall performance it is. This type of data is usually seen in

Performance Monitor collection sets. You must use the SQL query data to understand

what applications, client computers, or SOLIDWORKS PDM operations are involved.

When analyzing a SQL query, it is important to identify the name of the SOLIDWORKS

PDM stored procedures. In most cases, these stored procedures have a self-explanatory

name. For example, XRef_GetTree means getting file references, SPA_AddDocuments

means the operation to add documents, and so forth.

If a SOLIDWORKS PDM vault stored procedure appears in a SQL event that takes a long

duration, or is involved in a deadlock or blocking process report, the stored procedure

helps identify the cause of the performance issue.

SQL queries that have stored procedures may include as parameters document IDs or user

IDs, which you might use to reproduce the issue. Eventually, this should help solve the

problem.

 41

The next section covers additional information about how to analyze performance data.

c) Performance Data Collection Setup

i) SQL Server tracing

You can use SQL Server tracing to get detailed information about database server

performance. For SOLIDWORKS PDM, you can use tracings to find information such as

slow running operations (based on queries) or random performance incidents. There are

two main types of SQL tracing that SOLIDWORKS Technical Support recommends:

 To capture SQL workload – This method is useful when reproducing an issue, or

if you need to understand the CPU breakdown by the main SOLIDWORKS PDM

operations, applications, or client computers.

 To collect reports for random key performance indicators such as deadlocks or

blocking processes.

For tracing, the recommendation is to use SQL Server Extended Events sessions that are

available in SQL Server Management Studio and require SQL Server 2012 or newer.

For the SQL Server 2008 R2 versions, it is still possible to collect trace data by using

tools such as SQL Server Profiler.

SQL Server Profiler is especially useful when reporting simple SOLIDWORKS PDM

issues. For example, when viewing a Bill of Materials, or if a specific search is not

performed in a timely manner.

 42

 SQL workload tracing

SQL Server workload helps provide an understanding of the flow of queries. As an

example, it can identify transactions that take a long time, consume too much CPU, or

that have an unusual number of reads. Depending on SQL Server versions, you should

follow these steps to collect the SQL workload:

 SQL Server 2008 R2

For this SQL Server version and for any simple case that is easy to reproduce (for

example, a specific file operation is very slow), use SQL Server Profiler and

follow these steps:

1. Open SQL Server Profiler. Go to Start > All Programs > Microsoft SQL Server >

Performance Tools. You can also access the tool from SQL Server Management

Studio under Tools > SQL Server Profiler.

2. Click File > New Trace and connect to the SQL Server.

3. In the Trace Properties dialog box, select the Standard template in the Use the

template list.

4. In the Trace name field, type a name for the trace. For example, TraceTest01.

5. Select the Save to File option and specify a location in which to save the trace. Then

click Save.

6. Change the Set maximum file size option to 50. The default value of 5 MB is

usually too small and may end up creating multiple trace files.

7. On the Events Selection tab, select the Show all columns option.

8. Right-click the DatabaseName header > Select Column. This column is useful later

to filter the results based on databases.

9. On the Events Selection tab, right-click the HostName header > Select Column.

This column is useful later to filter the results based on clients.

10. Click Run.

 43

11. If the task is to obtain a SQL workload sample, allow the trace to run for 20 minutes.

However, if the reason to run the trace is for a specific issue, perform the action that

causes performance problem. For example, check in the file to which you previously

browsed.

12. After completing the action that has a performance problem, click Stop Selected

Trace (the red stop button) in the SQL Server Profiler.

 For SQL Server 2012 or newer

Use Extended Events sessions based on the Query Batch Tracking template that tracks

all active sessions.

 44

To configure a SQL Server workload session, follow these steps:

1. Open SQL Server Management Studio.

2. Connect to the production server instance.

3. Expand the SQL Server instance > Management > Extended Events.

4. Right-click Sessions > New Session Wizard.

5. Type a new name for the session. For example, Query Batch Tracking.

6. Click Next and then select the Use this event session template option.

7. Select the Query Batch Tracking template, and then click Next.

8. On the Capture Global Fields page, select the check boxes for the client_hostname

and database_name fields.

 45

9. Click Next and proceed to the Specify Session Data Storage page. Then select the

Save data to a file for later analysis option.

10. For the File name on server option, browse to a file location in which you wish to

save the trace file. For example, C:\Temp\ QueryBatchTracking.xel.

If you do not specify a file location, the trace file saves in the default location of the Log

folder. For example, C:\Program Files \Microsoft SQL Server

\MSSQL[version].MSSQLSERVER\MSSQL\Log\

QueryBatchTracking.xel. However, sometimes there is a change to the default

location. Therefore, it is better to specify the location in which to save the trace file.

11. Ensure that the Enable file rollover option is active and that the total stored data is

approximately 500 MB. For example, Maximum file size = 100 MB and Maximum

number of files is 5. A size of 500 MB is a recommendation only. You can add more

storage as needed.

 46

12. Click Finish and then click Close.

13. In the SQL Server Management Studio Object Explorer, expand the SQL Server

instance and navigate to Management > Extended Events > Sessions.

14. Right-click Query Batch (or the name you specified in step 5) > Start Session.

15. After reproducing the issue or after 20 minutes when taking SQL workload samples,

stop this extended session. To do this, repeat step 13, and then right-click

QueryBatchTracking (or the name you specified in step 5) > Stop Session.

Important:

 All of these settings take effect immediately without stopping and restarting the

server.

 After defining an Extended Events session, it is not mandatory to delete it. You

can stop the session and keep it for use in the future.

 When troubleshooting a specific issue, you can use the Query Batch Tracking

session example to start and stop while reproducing that specific issue. For

performance cases where SQL Server CPU utilization is very high (for example >

80%-85%), the interval between starting and stopping a session should be a

maximum of 5 minutes. However, if CPU usage exceeds 90%, you should not use

this session.

 When sending trace files to Technical Support for analysis, the recommendation is

to temporarily stop and restart the extended session. This ensures that the latest

data capture writes to the Extended Events trace file. To do this, expand the SQL

Server instance and navigate to Management > Extended Events > Sessions >

 47

right-click Query Batch (or the name you specified in step 5) > Stop Session.

Note that if want to continue using the session after you copy the trace file, make

sure right-click the session > Start Session.

 You can also use the Query Batch Sampling template. This template captures by

default only 20% of the active sessions, which means that you can run the session

for intervals longer than just a few hours. However, data collected by this template

is incomplete and not accurate enough. This template is mainly useful to get a

general overview of the SQL workload and not to properly troubleshoot a

performance issue. Therefore, avoid using this template unless SOLIDWORKS

Technical Support provides explicit instruction to use it.

 Tracing deadlocks reports and blocked processes reports

For SQL Server 2008 R2, it is good to configure deadlocks reports and blocked processes

reports as described in the Knowledge Base solution S-069784. This solution also

includes additional SQL script files. Be aware that the output is trace files with the TRC

file format.

For SQL Server 2012 or newer, the recommendation is to use server side Extended Events

sessions because they are lighter and easy to configure to run on the server side. The

following Extended Events sessions are recommended:

 Capturing locks and deadlocks using “system_health”

SQL Server 2012 and newer versions enable a system_health Extended Events session

by default on. Among other things, this session captures deadlock reports and relevant

database locks. To ensure that a system_health session captures performance data for

several weeks or months, it is a recommendation to increase data storage for the session.

To do this, follow these steps:

1. Open SQL Server Management Studio.

2. Connect to the production SQL Server instance.

3. Expand the SQL Server instance and navigate to Management > Extended Events >

Sessions > right-click system_health > Properties.

4. In the Data Storage section, click the event_file row and determine if Maximum file

size is much greater than 5 MB. It is likely to specify use of the default setting that

stores only 20MB of data.

5. If the total stored data is less than 500 MB, choose to Remove the event_file. The

click Add and reselect event_file in the drop-down list.

6. Make sure that the Enable file rollover option is active and that the total stored data

is approximately 500 MB. For example, Maximum file size = 100 MB and

https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-42USTK7

 48

Maximum number of files is 5. A size of 500 MB is a recommendation only. You

can add more storage as needed.

7. Make sure that the system_health session is started.

Notes:

 When sending trace files to Technical Support for analysis, the recommendation is

to temporarily stop and restart the extended session. This ensures that the latest

data capture writes to the Extended Events trace file. To do this, expand the SQL

Server instance and navigate to Management > Extended Events > Sessions >

right-click Query Batch (or the name you specified in step 5) > Stop Session, and

then right-click Start Session.

 The system_health extended session should remain on continuously because this

is a default configuration on SQL Server.

 49

 Capturing blocking locks

To capture blocking reports, follow these steps to create a new Extended Events session:

1. Open SQL Server Management Studio.

2. Connect to the production Server instance.

3. Expand the SQL Server instance and navigate to Management > Extended

Events.

4. Right-click Sessions > New Session Wizard.

5. Type a name for the new session. For example, type BlockingLocks.

6. Click Next > select the Do not use a template option > Next.

7. On the Select Events to Capture page, double-click the blocked_process_report

event (or press the arrow) to move the event to the Selected Events list.

8. Click Next and proceed to the Specify Session Data Storage page. Then select

the Save data to a file for later analysis option.

9. For the File name on server option, browse to a file location in which you wish to

save the trace file. For example, C:\Temp\ BlockingLocks.xel.

Note: If you do not specify a file location, the trace file will be saved in the default

location of the ‘Log’ folder. For example, C:\Program Files \Microsoft

SQL Server \MSSQL[version].MSSQLSERVER\MSSQL\Log\

BlockingLocks.xel. However, sometimes there is a change to the default

location. Therefore, it is better to specify the location in which to save the trace file.

10. Click Finish and then click Close.

 50

11. In Object Explorer, right-click the SQL Server instance > Properties >

Advanced and set the Blocked Process Threshold event to 20 seconds. In test

environments, you could use a value of 5 seconds instead.

12. Expand the SQL Server instance and navigate to Management > Extended

Events > Sessions > Blockings (or the name specified in step 5) > Start Session.

Important:

 It is a best practice to use a blocking extended session only when you require

server performance analysis. If after capturing several weeks of data there are no

reasons to continue capturing blocking incidents, you should stop the session and

set the blocked process threshold value to 0 (zero) to disable the session. You can

do this from the Advanced tab of the SQL Server instance Properties.

 Under no circumstances should the values for the blocked process threshold be

lower than 5. If the value is lower than 20, the process captures more blocking

events. However, for very busy SQL Servers, there may be an indication to

increase the threshold to 30 seconds.

 All of these settings take effect immediately without stopping and restarting the

server.

 When sending trace files to Technical Support for analysis, the recommendation is

to temporarily stop and restart the extended session. This ensures that the latest

data capture writes to the Extended Events trace file. To do this, expand the SQL

Server instance and navigate to Management > ‘Extended Events > Sessions >

right-click Query Batch (or the name you specified in step 5) > Stop Session.

Then, right-click Start Session. If you want to continue using the session after you

copy the trace file, make sure to right-click the session > Start Session.

 51

 Analyzing SQL trace data

You can use the SQL Server Profiler tool to review SQL traces with the TRC file format.

You can open Extended Events sessions in SQL Server Management Studio for analysis.

VARs can use for Extended Events sessions the SOLIDWORKS Log Parser tool (Reseller

Version), which is available in the Knowledge Base solution S-067430. One of the

advantages of using the Log Parser tool is that it can generate charts and extract a

blocking chain details report. This section covers only the following main Extended

Events that the Log Parser tool supports:

 For SQL workload analysis: rpc_completed and sql_batch_completed.

 For key performance indicators such as database locks, deadlocks or blocking

chains: wait_info, xml_deadlock_report and blocked_process_report.

 Windows Performance Monitor tool

Windows provides the Performance Monitor tool that you can use to record specific

aspects (counters) of the system performance over long periods or time. You can start this

tool from the command line by entering perfmon. The SQL Server installation adds other

counters that are accessible with this tool.

If SQL Server counters are not available when setting up this collection set, this might be

an indication that the counters are inactive or that there was a conflict during SQL Server

installation or update. In most cases, running a SQL Server Repair operation restores the

missing SQL counters.

 Monitoring performance at all times

When capturing data over long time intervals (such as several weeks), the

recommendation is to avoid using a Performance Monitor data set with too many

counters. For example, the counters in the following list should be enough to capture the

main key performance indicators without creating significant overhead on SQL Server:

 Memory: Available Mbytes

 Processor: Processor Time\ _Total

 SQLServer: General Statistics\Processes Blocked

 SQLServer: General Statistics\User Connections

 SQLServer: Locks\Number of Deadlocks/sec

The Data Collector Properties include a specification for the sample interval. Consider

defining a time interval sampling that is equal to or greater than 1 minute.

https://varportal.solidworks.com/prmportal_enu/start.swe?SWECmd=GotoView&SWEView=SW+KBase+Solution+View+(eChannel)&SWERF=1&SWEBU=1&SWEApplet0=SW+KBase+Solution+Form+Applet+(eChannel)&SWERowId0=1-35MQJ7F

 52

 Custom Performance Monitor collection data sets

Many more counters are available in Performance Monitor. A guide about which counters

are most useful when investigating SQL Server performance issues is available in the

Knowledge Base solution S-025698. This solution includes many counters with a short

time interval sampling that increases the resource usage on SQL Server. These counters in

this solution are not appropriate for use over long time intervals.

For more complex performance issues, you can select the appropriate counters in this

solution to define a Data Collector for Performance Monitor.

The following sections provide guidelines for what some might consider “normal” or

‘”ideal” values for these counters, and what might indicate a problem area. Do not

consider these values as absolute. You can obtain the most useful information by

observing how these counters changeover time.

 Processor counters

 Processor=>%Processor Time: _Total – This is the percentage of elapsed time

the processor spends running non-idle threads. Ideally < 80%. This is only useful

on physical machines. The value drops dramatically on virtual machines because

you cannot see the cause of CPU loading.

https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-FMHM11

 53

 Processor=>%Privileged Time: _Total - This is the amount of time the processor

was busy with Kernel mode operations. If the processor is very busy and this

mode is high, it is usually an indication of some type of OS service having

difficulty, although user mode programs can make calls to the Kernel mode OS

components to cause this type of performance issue occasionally.

 Processor=>User Time: _Total – The value of this counter helps to determine the

kind of processing that is affecting the system. This is the total amount of non-idle

time that was spent on user mode operations, generally this means application

code.

 Processor=>Interrupts/sec – This is the number of interrupts the processor was

asked to respond to. Interrupts are generated from hardware components such as

hard disk controller adapters and network interface cards. A sustained value over

1000 usually indicates a problem. Problems include poor configuration of drivers,

errors in drivers, excessive utilization of a device (such as a network interface

controller (NIC) on an IIS server), or hardware failure. Compare this value with

the System=>Systems Calls/sec counter. If the Interrupts/sec is much larger over

a sustained period, there is probably a hardware issue.

 Process(sqlservr)=>% Process Time – (on the SQLSERVR instance) This is the

percentage of processor time spent on SQL Server process threads. Ideally <80%.

 Process(sqlservr)=>Private Bytes

 Process(sqlservr)=>Working Set

 Server=>Pool Nonpaged Failures

 Server=>Pool Paged Failures

 Server=>Pool Nonpaged Peak

 System=>Context Switches/sec

 System=>Processor Queue Length – This is the number of threads waiting for

CPU cycles, where < 12 per CPU is good to fair. Fewer than 8 is better. Fewer

than 4 is best.

 Memory and Pagefile usage counters

Available memory is usually the most common source for performance issues on a

Windows Server installation. Fortunately, this is an easy metric to measure because there

are several counters in the memory object that can help troubleshoot memory issues. Most

notably, two important counters provide a reasonably accurate overview of memory

pressures. These are the Page Faults/sec and Pages/sec counters. Using these two

memory counters alone can highlight if the system is correctly configured and

experiencing memory issues. The following counters are recommended to monitor

memory and pagefile.sys file (pagefile) usage.

 Memory=>Available Mbytes – Shows the unused physical memory (not using

page file).

 Memory=>Cache Bytes

 54

 Memory=>Commit Limit

 Memory=>CommittedBytes – This counter monitors the amount of memory (in

bytes) that has been allocated by the various processes. As this increases above the

available memory, so does the pagefile size because the paging has increased.

 Memory=>Page Input/sec – Shows the virtual memory pages read from the hard

disk per second. This can help to identify paging as a bottleneck. The value should

be less than 10.

 Memory=>Pages/sec – Shows the number of pages that are read from or written

to the disk.

 Memory=>Page Faults/sec – Gives a high-level view of memory related

performance problems.

 Memory=>Pool Nonpaged Bytes

 Paging File=>%Usage - Shows the percentage of the paging file that is actually in

use. You can use this counter to determine if the Windows pagefile is a potential

bottleneck. If this value consistently remains above 50% or 75%, you should

consider increasing the pagefile size or moving the pagefile to another disk.

 Paging File=>%Usage Peak – This is the highest %Usage metric since the last

server restart.

The most important memory counter is Pages/sec, which shows the number of pages read

from or written to disk. Therefore, this counter is a representation of the quantity of hard

page faults that the system is experiencing. Microsoft recommends upgrading the amount

of memory if the Pages/sec value consistently averages more than 5 pages per second. In

practice, you will probably begin to experience slower system performance only when the

value is consistently over 20. Therefore, it is good to watch this counter carefully once it

pushes over 10 pages per second.

The Pages/sec counter is also useful in determining if the system is “thrashing,” that is,

experiencing more than 100 pages per second. You should prevent thrashing from

occurring on a Windows Server 2008 R2 system because the reliance on the disk to

resolve memory faults dramatically affects how efficiently the system can cope with

workloads.

A system experiences page faults when a process requires data or code that it cannot find

in its working set. A working set is the amount of memory committed to a certain process.

When a process must retrieve the data or code in another part of physical memory, this is

a “soft fault”. A “hard fault” refers to a process that retrieves the data or code from the

disk subsystem. Modern systems can cope with a large number of soft faults without

significant performance impairment. However, because a hard fault requires disk

subsystem access, this causes the process to wait a significant amount. This dramatically

slows performance. The Memory section of the Resource Monitor in Performance

Monitor includes columns that display working sets and hard faults.

 55

The Page Faults/sec counter displays both hard and soft faults. This counter often

displays rather high numbers that sometimes exceed several hundred faults per second.

When the counter exceeds several hundred page faults per second for extended durations,

you should check other memory counters to try to identify if a bottleneck exists. The

system memory is limited in size, and Windows Server supplements the installed RAM

with virtual memory, which is more abundant. Windows begins paging to disk when the

entire installed RAM is in use. This in turn frees the RAM for new processes

and applications.

Windows generally increases the size of the pagefile automatically as necessary. In

certain cases however, you may want to tune the system performance and manage the

virtual memory settings yourself. You can significantly improve performance by

maintaining the default pagefile in the system drive, and then adding another pagefile to

an additional hard drive. Spanning virtual memory across several disks or simply placing

the pagefile on a second, less frequently accessed disk can also boost the performance of

your Windows Server installation. However, you need to ensure that the secondary disk is

not slower than the disk that currently holds the pagefile.

 Physical Disk usage counters

The most useful counters for monitoring the disk subsystem are the % Disk Time and

Avg. Disk Queue Length counters.

 PhysicalDisk=>% Disk Time – This counter monitors the time that a certain

physical or logical drive uses in servicing the read and write requests.

 PhysicalDisk=>Average Disk Queue Length – This counts the number of

unserviced requests on the physical or logical drive. The Avg. Disk Queue Length

is an interval average and therefore is a numerical representation of the number of

delays the disk drive experiences. In general, if the delay often exceeds 2, the

disks are inadequate to service the system workload and performance may be

compromised.

 PhysicalDisk=>Average Disk sec/Read – This counter is a key measure of disk

latency. It represents the average time, in milliseconds, of each read from disk. A

value of 8 ms is good.

 PhysicalDisk=>Average Disk sec/Write – This counter is a key measure of disk

latency. It represents the average time, in milliseconds, of each write to disk. A

value of > 20 ms non-cached is poor.

 PhysicalDisk=>Disk Reads/sec

 PhysicalDisk=>Disk Write Bytes/sec

 PhysicalDisk=>Avg. Disk sec/Transfer – This counter relates to the pagefile.sys

file.

 56

 SQL Server counters

 Access Methods=>Mixed page allocations/sec

 Access Methods=>Workfiles Created/sec – This is the number of work files

created per second. Tempdb workfiles are used in processing hash operations

when the amount of data being processed is too big to fit into the available

memory. You might be able to reduce this number by making the queries more

efficient by adding or changing indexes, adding additional memory, etc.

 Access Methods=>Worktables Created/sec – This is the number of worktables

created in tempdb per second. Worktables are used for queries that use various

spools (table spool, index spool, and others).

 Buffer Manager=>Page life expectancy – This is the number of seconds a page

stays in the buffer pool without references. A buffer that has a 300-second page

life expectancy keeps any given page in memory in the buffer pool for 5 minutes

before the buffer pool flushes the page to disk, unless a process references the

page. Microsoft recommends 300 seconds as the minimum target for page life

expectancy.

 Buffer Manager=>Target pages

 Buffer Manager=>Total pages

 Buffer Manager=>Buffer cache hit ratio – This counter indicates how often

SQL Server goes to the buffer, not the hard disk, to get data. The higher the ratio,

the less often SQL Server must go to the hard disk to fetch data. Overall, this

boosts performance. A ratio of 90% to 95% is ideal. In addition, watching how

this ratio changes over time can give you a good idea of how the system

performance is likely to affect users.

Unlike many of the other counters available for monitoring SQL Server, this

counter averages the buffer cache hit ratio from the time of the last SQL Server

restart. In other words, this counter is not a real-time measurement, but an average

of all of the days since the last SQL Server restart. Because of this, if you want to

get an accurate record of what is happening in your buffer cache right now, you

must stop and then restart the SQL Server service. Afterward, allow SQL Server

to run for several hours of normal activity before checking this figure.

 General Statistics=>Temp Tables Creation Rate

 General Statistics=>Temp Tables For Destruction

 General Statistics=>User Connections – This counter does not appear in the

Solution document. However, it can be a useful counter to evaluate how the

number of users correlates with other performance factors.

 SQL Statistics=>Batch Requests/sec - This counter is a good general indicator

for the activity level of the SQL Server. The counter is highly dependent on the

hardware and the nature of the application running on the server.

 57

 SQL Statistics=>SQL Compilations/sec – This is the number of times that

Transact-SQL compilations occur, per second (including recompiles). A lower

value is better and should be less than 10% of the Batch Requests/sec counter.

 SQL Statistics=>SQL Re-Compilations/sec – This is the number of times, per

second, that Transact-SQL objects attempted to run but had to be recompiled

before completion. This number should be at or near zero because recompiles can

cause deadlocks and exclusive compile locks.

 Transactions=>Free Space in tempdb (KB)

 Locks=>Number of Deadlocks/sec – This is the number of lock requests, per

second, that resulted in a deadlock. Because only a COMMIT, ROLLBACK, or

deadlock can terminate a transaction (excluding failures or errors), it is important

to track this value.

 Memory Manager=>Memory Grants Pending - This counter shows the current

number of processes that are waiting for a workspace memory grant. The target

value should be close to 0.

 How to interpret performance metrics for disks

For a logical drive on which the OS is installed, the instance of counters is not important.

There is nothing you can do about how the OS accesses the drive, and apart from startup,

it is not used heavily. If you have not yet moved some of the SQL Server database files

(like tempdb) to a different logical drive, there might be a lot of activity for these

counters.

The logical drives that you are most interested in are those that hold the data MDF and

NDF files for SQL Server. The amount of drive activity relates directly to the amount of

RAM that is available for SQL Server to use.

If the overall database size is less than the amount of RAM that is available to SQL

Server, the database pages are read gradually from the disk into memory. There will then

be very little disk activity. This is because the SELECT (read) queries will access the data

from RAM.

If the overall database size is larger than the RAM that is available to SQL Server, the

disk activity reflects the paging of data from the disk into RAM and RAM to the disk.

In the second case, the % Disk Time counter is a reflection of the ratio of the database

size to RAM. A high ratio (large database and small amount of RAM) will cause a high %

Disk Time if the disk subsystem cannot keep up with the read and write requests of the

database. Whether the disk drive can keep up is relative to the amount of usage, the mix

of queries to the database, and the configuration of the disk subsystem.

If % Disk Time averages over 70 percent, you need to check the second counter for that

logical drive's Current Disk Queue Length. This is an indication of the pending “waits”

for the spindle. The term “waits” means that SQL Server was delayed accessing data from

the disk. The Current Disk Queue Length value should not exceed twice the number of

 58

spindles in the logical drive. In a RAID 1 configuration with two drives (one spindle

each), you want a maximum Current Disk Queue Length value of 4.

If you experience high Current Disk Queue Length, consider the following:

 Use faster disk drives.

 Add another RAID 1 array and create data files on that array for each filegroup on

the system.

 If using RAID 1+0 or RAID 5, you can add additional disks to increase the

spindles.

 Analysis of Performance Monitor logs

It is possible to use Performance Monitor to view and analyze the captured log files.

Various views are possible, and you can switch different sets of counters on or off to

focus on the different aspects of the analysis.

It is also possible to acquire third-party tools to help you review the captured data. One

convenient tool is the Performance Analysis of Logs (PAL) utility, which is an open

source project that available under a Microsoft Public License. The PAL tool applies

guidelines that are relevant to specific applications (such as SQL Server) to help highlight

counters that exceed recommended values.

 59

You can find the PAL tool at https://github.com/clinthuffman/PAL.

d) Performance Baselines

One of the most difficult aspects of performance is trying to identify and quantify when

the system is actually running “slowly”, and whether the slowness relates to server

activities.

To address this, SOLIDWORKS Technical Support recommends that you monitor and

record a performance baseline of the SQL Server within two weeks after deployment. The

length of capture can be two or three typical workdays. This establishes a benchmark

against which you can compare any later investigations.

It is often worth waiting a few days for the system to “settle in”. The latest versions of

SQL Server have an element of automatic tuning that responds to typical usage patterns.

In addition, you have an opportunity to resolve any teething problems.

You should then take equivalent measurements, perhaps every quarter. This allows you to

make comparisons to the baseline measurements. It also means that you are prepared if

you experience a sudden performance problem.

Measuring your system over time allows you to acquire the knowledge of what constitutes

normal behavior, and what indicates an abnormal load, or degraded performance.

i) How to make performance baselines

The easiest way to generate performance baseline data is to run the SOLIDWORKS PDM

Status Report tool once a day during working hours. To run the report, go to File > Run

Diagnostics and Generate Performance Snapshot Reports.

https://github.com/clinthuffman/PAL

 60

For a more detailed baseline, collect the following data for two weeks:

 Windows Performance Monitor data as explained in the section “Monitoring

Performance At All Times.”

 Key performance indicators for random performance as explained in the section

“Tracing deadlocks reports and blocked processes reports.”

 Take two SQL Workload samples, each from a different weekday as explained in

the section “SQL Workload tracing.”

Note that a SQL Workload sample data set is more of a requirement when you

find a performance issue and want a more in depth assessment.

ii) Schedule monitoring

Repeat the performance capture every few months and compare it to the baseline. This

becomes a proactive approach to maintaining peak performance.

iii) Compare performance benchmark data

Compare current performance metrics to the previous benchmark metrics and look for

patterns that might indicate the source. This might lead you straight to a specific problem.

However, it is often a combination of factors. Therefore, you need to investigate each of

the different areas.

If you have not yet applied some recommendations from the “Installation and

Configuration” chapter, when performance becomes an issue it is time to determine if it

would be useful to apply any of those techniques.

e) Database Replication

For database replication, most of the troubleshooting guidelines still apply. However, it is

a best practice to configure the recommended data collection sets for the primary site and

for at least one secondary site.

f) Memory

Use Performance Monitor and Status Report > ‘Performance > Memory Report to

look for signs of conflicts over RAM.

Consider:

 Moving applications off of the SQL Server hardware

 Disabling redundant OS services

 Disabling redundant SQL Server services

 Adding more RAM

 61

g) Disk

Use Performance Monitor to look for disk hotspots.

Consider:

 Moving file locations

 Adding more data files

 Reconfiguring disks

 Adding more disks

h) Processor

Use Performance Monitor, Extended Events Sessions, and Status Report > Performance

> CPU to see if the processors are the bottleneck.

Consider:

 Moving applications off of the SQL Server hardware

 Adding more processors

 62

i) Index Fragmentation

SQL Server uses indexes to provide fast access to information at the request of users or

applications. As the table data grows or changes, the Database Engine maintains these

indexes. Over time, the indexes can experience fragmentation, especially in databases like

SOLDIWORKS PDM in which there is a lot of insert, update, and delete activity.

Fragmentation occurs in an index when the physical ordering on the disk does not match

the logical order of the data (as defined by the index key,) or when data pages that contain

the index are dispersed across non-adjacent sections of the disk. Fragmentation of an

index can reduce the speed of data access and result in slower performance of the

application. It can also cause the use of more disk space than is actually necessary. You

can correct index fragmentation by reorganizing or rebuilding the index.

The easiest way to check for index fragmentation is to run Status Report > Performance

> Index Fragmentation.

 63

The Recommended operation column in the report states if a specific table or table

index requires a specific maintenance task.

Reorganizing an index does not block user access to the index while the reorganization is

in process. However, rebuilding or recreating the index does prevent user access to the

index. The exception to this is when using the ALTER INDEX REBUILD statement with

the ONLINE = ON option.

Periodically checking for index fragmentation and taking any necessary corrective action

is important to maintaining the performance of your SOLIDWORKS PDM system. The

rate at which fragmentation occurs depends on user activity. In general, SOLIDWORKS

Technical Support recommends checking index fragmentation at least monthly.

Use the following values to determine the best method to remove the fragmentation:

 Reorganize the index when index fragmentation falls between 5% to 30%.

 Rebuild the index when index fragmentation is greater than 30%.

For information about how to establish a maintenance plan that rebuilds the indexes for a

SOLDIWORKS PDM database, see the following Knowledge Base solutions:

 S-042552 Using SOLIDWORKS® PDM, what is the recommended procedure to

rebuild the file vault databases using a maintenance plan in Microsoft® SQL

server?

https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-MF2S6F

 64

 S-074949 In SOLIDWORKS® PDM, how should I set up a custom script to

reorganize or rebuild only those indexes that experience fragmentation?

The purpose of the indexes is to improve the speed of reading data from the database.

However, it is possible to degrade the overall performance with a poor index design

because of the impact on database writing. You should not attempt to create or modify

indexes manually because this can lead to performance problems or even data corruption.

j) Tempdb Files

Aside from the performance bottleneck issues discussed earlier, the only problem that is

likely to occur with tempdb is that disk space runs out. For information about how to

handle this situation, see the following articles on the Microsoft website:

 tempdb Performance:

https://docs.microsoft.com/en-us/sql/relational-databases/databases/tempdb-

database?view=sql-server-ver15

 How to shrink the tempdb database in SQL Server:

http://support.microsoft.com/kb/307487

You can avoid resizing data files by checking the size of tempdb occasionally.

k) Transaction Log file

If log records were never deleted from the transaction log, the log would eventually

consume all of the disk space that is available to the physical log files. Under the Simple

Recovery model, log truncation automatically frees space for reuse by the transaction log,

after a backup checkpoint. Therefore, this should not become a problem if you make

regular backups.

If you are using the Full Recovery option, other factors can influence log truncation, so

pay extra attention to log file growth.

The only time virtual log files affect system performance is if the log files are defined by

small size and growth_increment values. If these log files grow to a large size because of

many small increments, there will be many virtual log files. This can slow down database

startup and the backup and restore operations. The recommendation is to assign log files a

size value close to the final size you require and to assign a relatively large

growth_increment value.

 The Transaction Log (SQL Server):

https://docs.microsoft.com/en-us/sql/relational-databases/logs/the-transaction-log-

sql-server?view=sql-server-ver15

https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-8AA1MNR
https://docs.microsoft.com/en-us/sql/relational-databases/databases/tempdb-database?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/databases/tempdb-database?view=sql-server-ver15
http://support.microsoft.com/kb/307487
https://docs.microsoft.com/en-us/sql/relational-databases/logs/the-transaction-log-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/logs/the-transaction-log-sql-server?view=sql-server-ver15

 65

5) References

There are many sources for technical information about these topics including the

following. This is by no means an exhaustive list.

a) SOLIDWORKS PDM Solutions

Many SOLIDWORKS solutions address specific aspects of SQL Server performance.

Here is a list of some of these solutions. Because SOLIDWORKS Technical Support adds

new solutions to the Knowledge Base regularly, be sure to consult the Knowledge Base

whenever you encounter a problem.

Solution Title

S-072960 Using SOLIDWORKS® PDM 2017, what are the recommended steps to set

up and configure Microsoft® SQL Server Enterprise edition for database

replication?

S-069784 Is there documentation about how to set up a server side trace on the

Microsoft® SQL Server 2005 or Microsoft SQL Server 2008 database

software to troubleshoot SOLIDWORKS® PDM blocking chains and

deadlocks?

S-068611 What SQL Server Extended Events sessions are recommended to be used

for troubleshooting SOLIDWORKS PDM?

S-056773 When using a storage area network (SAN) what could cause

SOLIDWORKS® PDM performance issues?

S-00581 Are there any network settings that users should be on the lookout for when

experiencing PDMWorks performance issues?

S-057205 What is an SQL Server Profiler trace and how is it used to monitor SQL

performance against SOLIDWORKS® PDM databases?

S-025698 Which counters should be used in PerfMon to conduct a performance

baseline of Microsoft® SQL Server?

S-027967 Is there a way to set up performance email alerts to help monitor a

SOLIDWORKS® PDM file vault database in Microsoft® SQL Server?

S-037734 How is SOLIDWORKS® PDM performance improved when working

remotely through a VPN or WAN with limited bandwidth?

S-055284 What can affect search performance in a SOLIDWORKS® PDM vault

database?

S-042552 Using SOLIDWORKS® PDM, what is the recommended procedure to

rebuild the file vault databases using a maintenance plan in Microsoft® SQL

server?

S-055090 What are some best practices to manage memory to avoid Microsoft® SQL

Server process hosting SOLIDWORKS® PDM databases from taking all

available operating system memory?

S-027967 Is there a way to set up performance email alerts to help monitor a

SOLIDWORKS® PDM file vault database in Microsoft® SQL Server?

S-07794 How can I prevent the Microsoft® SQL database transaction log file

('.LDF') for a SOLIDWORKS® PDM database from growing unexpectedly

in size and how do I shrink a large log file size?

https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-69ZBU5O
https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-42USTK7
https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-3PK5J31
https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-11F439P
https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-3DOEJD
https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-12A9B4X
https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-FMHM11
https://varportal.solidworks.com/prmportal_enu/start.swe?SWECmd=GotoView&SWEView=SW+KBase+Solution+View+(eChannel)&SWERF=1&SWEBU=1&SWEApplet0=SW+KBase+Solution+Form+Applet+(eChannel)&SWERowId0=1-GC1ROK
https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-K01HPR
https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-YO288E
https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-MF2S6F
https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-YAMXRY
https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-GC1ROK
https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-4YYZM7

 66

S-029263 What is the difference between Simple Recovery and Full Recovery for the

Microsoft® SQL Server Recovery Model option?

b) Microsoft Knowledge Base

Microsoft provides a vast amount of information about SQL Server performance. The

following articles are some of the most useful and relevant to SOLIDWORKS PDM

installations.

Title URL

Monitor Resource Usage

(System Monitor)

https://docs.microsoft.com/en-us/sql/relational-

databases/performance-monitor/monitor-resource-

usage-system-monitor?view=sql-server-ver15

Performance Analysis of Logs

(PAL) Tool

https://github.com/clinthuffman/PAL

Reorganize and Rebuilding

Indexes

https://docs.microsoft.com/en-us/sql/relational-

databases/indexes/reorganize-and-rebuild-

indexes?view=sql-server-ver15

TempDB Database https://docs.microsoft.com/en-us/sql/relational-

databases/databases/tempdb-database?view=sql-

server-ver15

The Transaction Log (SQL

Server)

https://docs.microsoft.com/en-us/sql/relational-

databases/logs/the-transaction-log-sql-

server?view=sql-server-ver15

https://customerportal.solidworks.com/siebel/app/customerportal/enu?SWECmd=GotoView&SWEView=SW+OUI+KBase+Solution+View+(eService)&SWERF=1&SWEBU=1&SWEApplet0=SW+OUI+KBase+Solution+Form+Applet+(eService)&SWERowId0=1-GRYR5H
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/monitor-resource-usage-system-monitor?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/monitor-resource-usage-system-monitor?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/monitor-resource-usage-system-monitor?view=sql-server-ver15
https://github.com/clinthuffman/PAL
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/databases/tempdb-database?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/databases/tempdb-database?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/databases/tempdb-database?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/logs/the-transaction-log-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/logs/the-transaction-log-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/logs/the-transaction-log-sql-server?view=sql-server-ver15

